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Abstract—Non-negative matrix factorization (NMF) is the problem of determining two non-negative low rank factors W and H, for the given
input matrix A, such that A⇡WH. NMF is a useful tool for many applications in different domains such as topic modeling in text mining,
background separation in video analysis, and community detection in social networks. Despite its popularity in the data mining community,
there is a lack of efficient parallel algorithms to solve the problem for big data sets. The main contribution of this work is a new,
high-performance parallel computational framework for a broad class of NMF algorithms that iteratively solves alternating non-negative least
squares (NLS) subproblems for W and H. It maintains the data and factor matrices in memory (distributed across processors), uses MPI for
interprocessor communication, and, in the dense case, provably minimizes communication costs (under mild assumptions). The framework is
flexible and able to leverage a variety of NMF and NLS algorithms, including Multiplicative Update, Hierarchical Alternating Least Squares, and
Block Principal Pivoting. Our implementation allows us to benchmark and compare different algorithms on massive dense and sparse data
matrices of size that spans from few hundreds of millions to billions. We demonstrate the scalability of our algorithm and compare it with
baseline implementations, showing significant performance improvements. The code and the datasets used for conducting the experiments
are available online.
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1 Introduction
Non-negative Matrix Factorization (NMF) is the problem of
finding two low rank factors W 2Rm⇥k

+ and H 2Rk⇥n
+ for a given

input matrix A2Rm⇥n
+ , such that A⇡WH. Here, Rm⇥n

+ denotes the
set of m⇥n matrices with non-negative real values. Formally, the
NMF problem [1] can be defined as

min
W>0,H>0

kA�WHkF , (1)

where kXkF = (
P

i j x2i j)
1/2 is the Frobenius norm.

NMF is widely used in data mining and machine learning as a
dimension reduction and factor analysis method. It is a natural fit
for many real world problems as the non-negativity is inherent in
many representations of real-world data and the resulting low rank
factors are expected to have a natural interpretation. The applica-
tions of NMF range from text mining [2], computer vision [3], [4],
[5], and bioinformatics [6] to blind source separation [7], unsuper-
vised clustering [8], [9] and many other areas. In the typical case,
k⌧min(m,n); for problems today, m and n can be on the order of
millions or more, and k is on the order of few tens to thousands.
There is a vast literature on algorithms for NMF and their

convergence properties [10]. The commonly adopted NMF algo-
rithms are – (i) Multiplicative Update (MU) [1] (ii) Hierarchical
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Alternating Least Squares (HALS) [7], [11] (iii) NMF based
on Alternating Nonnegative Least Squares and Block Principal
Pivoting (ABPP) [12], and (iv) Stochastic Gradient Descent
(SGD) Updates [13]. Most of the algorithms in NMF literature are
based on alternately optimizing each of the low rank factorsW and
H while keeping the other fixed, in which case each subproblem
is a constrained convex optimization problem. Subproblems can
then be solved using standard optimization techniques such as
projected gradient or interior point method; a detailed survey for
solving such problems can be found in [14], [10]. In this paper,
our implementation uses either ABPP, MU, or HALS. But our
parallel framework is extensible to other algorithms (e.g., [15],
[16]) as-is or with a few modifications, as long as they fit an
alternating-updating framework (defined in Section 4).

With the advent of large scale internet data and interest in
Big Data, researchers have started studying scalability of many
foundational machine learning algorithms. To illustrate the
dimension of matrices commonly used in the machine learning
community, we present a few examples. Nowadays the adjacency
matrix of a billion-node social network is common. In the matrix
representation of a video data, every frame contains three matrices
for each RGB color, which is reshaped into a column. Thus in
the case of a 4K video, every frame will take approximately 27
million rows (4096 row pixels x 2196 column pixels x 3 colors).
Similarly, the popular representation of documents in text mining
is a bag-of-words matrix, where the rows are the dictionary and
the columns are the documents (e.g., webpages). Each entry Ai j
in the bag-of-words matrix is generally the frequency count of the
word i in the document j. Typically with the explosion of the new
terms in social media, the number of words spans to millions. To
handle such high-dimensional matrices, it is important to study
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low-rank approximation methods in a data-distributed and parallel
computing environment.
In this work, we present an e�cient algorithm and imple-

mentation using tools from the field of High-Performance Com-
puting (HPC). We maintain data in memory (distributed across
processors), take advantage of optimized libraries like BLAS and
LAPACK for local computational routines, and use the Message
Passing Interface (MPI) standard to organize interprocessor com-
munication. Furthermore, the current hardware trend is that avail-
able parallelism (and therefore aggregate computational rate) is in-
creasing much more quickly than improvements in network band-
width and latency, which implies that the relative cost of commu-
nication (compared to computation) is increasing. To address this
challenge, we analyze algorithms in terms of both their computa-
tion and communication costs. In particular, we prove in Section
5.2 that in the case of dense input and under a mild assumption, our
proposed algorithm minimizes the amount of data communicated
between processors to within a constant factor of the lower bound.
We call our implementation MPI-FAUN, an MPI-based

Framework for Alternating-Updating Nonnegative matrix
factorization algorithms. A key attribute of our framework is
that the e�ciency does not require a loss of generality of NMF
algorithms. Our central observation is that most NMF algorithms,
in particular those that alternate between updating each
factor matrix, consist of two main tasks: (a) performing matrix
multiplications and (b) solving Non-negative Least Squares (NLS)
subproblems, either approximately or exactly. More importantly,
NMF algorithms tend to perform the same matrix multiplications,
di↵ering only in how they solve NLS subproblems, and the matrix
multiplications often dominate the running time of the algorithms.
Our framework is designed to perform the matrix multiplications
e�ciently and organize the data so that the NLS subproblems can
be solved independently in parallel, leveraging any of a number
of possible methods. We explore the overall e�ciency of the
framework and compare three di↵erent NMF methods in Section
6, performing convergence, scalability, and parameter-tuning
experiments on over 1500 processors.

Dataset Type Matrix size NMF Time
Video Dense 1 Million x 13,824 5.73 seconds

Stack Exchange Sparse 627,047 x 12 Million 67 seconds
Webbase-2001 Sparse 118 Million x 118 Million 25 minutes

TABLE 1: MPI-FAUN on large real-world datasets. Reported time
is for 30 iterations on 1536 processors with a low rank of 50.

With our framework, we are able to explore several large-scale
synthetic and real-world data sets, some dense and some sparse.
In Table 1, we present the NMF computation wall clock time on
some very large real world datasets. We describe the results of
the computation in Section 6, showing the range of application of
NMF and the ability of our framework to scale to large data sets.
A preliminary version of this work has already appeared as

a conference paper [17]. While the focus of the previous work
was parallel performance of ABPP (Alternating Nonnegative
Least Squares and Block Principal Pivoting), the goal of this
paper is to explore more data analytic questions. In particular,
the new contributions of this paper include (1) implementing a
software framework to compare ABPP with MU (Multiplicative
Update) and HALS (Hierarchical Alternating Least Squares)
for large scale data sets, (2) benchmarking on a data analysis
cluster and scaling up to over 1500 processors, and (3) providing

A Input matrix
W Left low rank factor
H Right low rank factor
m Number of rows of input matrix
n Number of columns of input matrix
k Low rank
Mi ith row block of matrix M
Mi ith column block of matrix M
Mi j (i, j)th subblock of M
p Number of parallel processes
pr Number of rows in processor grid
pc Number of columns in processor grid

TABLE 2: Notation

an interpretation of results for real-world data sets. We provide
a detailed comparison with other related work, including
MapReduce implementations of NMF, in Section 3.
Our main contribution is a new, high-performance parallel

computational framework for a broad class of NMF algorithms.
The framework is e�cient, scalable, flexible, and demonstrated
to be e↵ective for large-scale dense and sparse matrices.
Based on our survey and knowledge, we are the fastest NMF
implementation available in the literature. The code and the
datasets used for conducting the experiments can be downloaded
from https://github.com/ramkikannan/nmflibrary.

2 Preliminaries
2.1 Notation

Table 2 summarizes the notation we use throughout this paper.
We use upper case letters for matrices and lower case letters for
vectors. We use both subscripts and superscripts for sub-blocks
of matrices. For example, Ai is the ith row block of matrix A, and
Ai is the ith column block. Likewise, ai is the ith row of A, and ai
is the ith column. We use m and n to denote the numbers of rows
and columns of A, respectively, and we assume without loss of
generality m>n throughout.

2.2 Communication model

To analyze our algorithms, we use the ↵-�-� model of distributed-
memory parallel computation. In this model, interprocessor
communication occurs in the form of messages sent between
two processors across a bidirectional link (we assume a fully
connected network). We model the cost of a message of size n
words as ↵+n�, where ↵ is the per-message latency cost and � is
the per-word bandwidth cost. Each processor can compute floating
point operations (flops) on data that resides in its local memory; �
is the per-flop computation cost. With this communication model,
we can predict the performance of an algorithm in terms of the
number of flops it performs as well as the number of words and
messages it communicates. For simplicity, we will ignore the
possibilities of overlapping computation with communication in
our analysis. For more details on the ↵-�-� model, see [18], [19].

2.3 MPI collectives

Point-to-point messages can be organized into collective commu-
nication operations that involve more than two processors. MPI
provides an interface to the most commonly used collectives like
broadcast, reduce, and gather, as the algorithms for these collec-
tives can be optimized for particular network topologies and pro-
cessor characteristics. For a concise description of the most com-
mon collectives, see [19, Figure 1]. The algorithms we consider
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use the all-gather, reduce-scatter, and all-reduce collectives, so we
review them here, along with their costs. Our analysis assumes
optimal collective algorithms are used (see [18], [19]), though our
implementation relies on the underlying MPI implementation.
At the start of an all-gather collective, each of p processors owns

data of size n/p. After the all-gather, each processor owns a copy
of the entire data of size n. The cost of an all-gather is ↵ · logp+
� · p�1p n. At the start of a reduce-scatter collective, each processor
owns data of size n. After the reduce-scatter, each processor owns
a subset of the sum over all data, which is of size n/p. This
single collective is a more e�cient way of implementing a reduce
followed by a scatter. (Note that the reduction can be computed
with other associative operators besides addition.) The cost of an
reduce-scatter is ↵·logp+(�+�)· p�1p n. At the start of an all-reduce
collective, each processor owns data of size n. After the all-reduce,
each processor owns a copy of the sum over all data, which is also
of size n. The cost of an all-reduce is 2↵ · log p+ (2�+ �) · p�1

p n.
Note that the costs of each of the collectives are zero when p=1.

3 Related Work

In the data mining and machine learning literature there is an over-
lap between low rank approximations and matrix factorizations
due to the nature of applications. Despite its name, non-negative
matrix “factorization” is really a low rank approximation.
Recently there is a growing interest in collaborative filtering
based recommender systems. One of the popular techniques for
collaborative filtering is matrix factorization, often with nonneg-
ativity constraints, and its implementation is widely available in
many o↵-the-shelf distributed machine learning libraries such as
GraphLab [20], MLLib [21], and many others [22], [23] as well.
However, we would like to clarify that collaborative filtering
using matrix factorization is a di↵erent problem than NMF: in
the case of collaborative filtering, non-nonzeros in the matrix
are considered to be missing entries, while in the case of NMF,
non-nonzeros in the matrix correspond to true zero values.
There are several recent distributed NMF algorithms in the

literature [24], [25], [26], [27]. Liu et al. propose running
Multiplicative Update (MU) for KL divergence, squared loss,
and “exponential” loss functions [27]. Matrix multiplication,
element-wise multiplication, and element-wise division are
the building blocks of the MU algorithm. The authors discuss
performing these matrix operations e↵ectively in Hadoop for
sparse matrices. Using similar approaches, Liao et al. implement
an open source Hadoop-based MU algorithm and study its
scalability on large-scale biological data sets [24]. Also, Yin, Gao,
and Zhang present a scalable NMF that can perform frequent
updates, which aim to use the most recently updated data [26].
Similarly Faloutsos et al. propose a distributed, scalable method
for decomposing matrices, tensors, and coupled data sets through
stochastic gradient descent on a variety of objective functions
[25]. The authors also provide an implementation that can enforce
non-negative constraints on the factor matrices. All of these works
use Hadoop to implement their algorithms.
We emphasize that our MPI-based approach has several

advantages over Hadoop-based approaches:

• e�ciency – our approach maintains data in memory,
never communicating the data matrix, while Hadoop-based
approaches must read/write data to/from disk and involves
global shu✏es of data matrix entries;

• generality – our approach is well-designed for both dense
and sparse data matrices, whereas Hadoop-based approaches
generally require sparse inputs;

• privacy – our approach allows processors to collaborate on
computing an approximation without ever sharing their local
input data (important for applications involving sensitive data,
such as electronic health records), while Hadoop requires the
user to relinquish control of data placement.
We note that Spark [28] is a popular big-data processing in-

frastructure that is generally more e�cient for iterative algorithms
such as NMF than Hadoop, as it maintains data in memory and
avoids file system I/O. Even with a Spark implementation of
previously proposed Hadoop-based NMF algorithm, we expect
performance to su↵er from expensive communication of input
matrix entries, and Spark will not overcome the shortcomings of
generality and privacy of the previous algorithms. Although Spark
has collaborative filtering libraries such as MLlib [21], which use
matrix factorization and can impose non-negativity constraints,
none of them implement pure NMF, and so we do not have a direct
comparison against NMF running on Spark. As mentioned above,
the problem of collaborative filtering is di↵erent from NMF, and
therefore di↵erent computations are performed at each iteration.
Fairbanks et al. [32] present a parallel NMF algorithm

designed for multicore machines. To demonstrate the importance
of minimizing communication, we consider this approach
to parallelizing an alternating-updating NMF algorithm in
distributed memory (see Section 5.1). While this naive algorithm
exploits the natural parallelism available within the alternating
iterations (the fact that rows of W and columns of H can be
computed independently), it performs more communication than
necessary to set up the independent problems. We compare the
performance of this algorithm with our proposed approach to
demonstrate the importance of designing algorithms to minimize
communication; that is, simply parallelizing the computation is
not su�cient for satisfactory performance and parallel scalability.
Apart from distributed NMF algorithms using Hadoop and

multicores, there are also implementations of the MU algorithm in
a distributed memory setting using X10 [33] and on a GPU [34].

4 Alternating-Updating NMF Algorithms
We define Alternating-Updating NMF algorithms as those that (1)
alternate between updating W for a given H and updating H for
a given W and (2) use the Gram matrix associated with the fixed
factor matrix and the product of the input data matrix A with the
fixed factor matrix. We show the structure of the framework in
Algorithm 1.

Algorithm 1 [W,H]=AU-NMF(A,k)
Require: A is an m⇥n matrix, k is the approximation rank
1: Initialize H with a non-negative matrix in Rn⇥k

+ .
2: while stopping criteria not satisfied do
3: Update W using HHT and AHT

4: Update H using WTW and WTA
5: end while

The specifics of lines 3 and 4 depend on the NMF algorithm,
and we refer to the computation associated with these lines as
the Local Update Computations (LUC), as they will not a↵ect the
parallelization schemes we define in Section 5.2. Because these
computations are performed locally, we use a function F(m,n,k) to
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denote the number of flops required for each algorithm’s LUC (and
we do not consider communication costs). Note that F(m,n,k) does
not include the cost of computing HHT , WTW, WTA, or AHT .
We note that AU-NMF is very similar to a two-block, block

coordinate descent (BCD) framework, but it has a key di↵erence.
In the BCD framework where the two blocks are the unknown
factors W and H, we solve the following subproblems, which
have a unique solution for a full rank H and W:

W argmin
W̃>0

�

�

�A�W̃H
�

�

�

F ,

H argmin
H̃>0

�

�

�A�WH̃
�

�

�

F .
(2)

Since each subproblem involves nonnegative least squares, this
two-block BCD method is also called the Alternating Non-
negative Least Squares (ANLS) method [10]. For example, Block
Principal Pivoting (ABPP), discussed more in detail at Section
4.3, is one algorithm that solves these NLS subproblems. In the
context of the AU-NMF algorithm, an ANLS method maximally
reduces the overall NMF objective function value by finding the
optimal solution for given H and W in lines 3 and 4 respectively.
There are other popular NMF algorithms that update the factor

matrices alternatively without maximally reducing the objective
function value each time, in the same sense as in ANLS. These
updates do not necessarily solve each of the subproblems (2)
to optimality but simply improve the overall objective function
(1). Such methods include Multiplicative Update (MU) [1] and
Hierarchical Alternating Least Squares (HALS) [7], which was
also proposed as Rank-one Residual Iteration (RRI) [11]. To
show how these methods can fit into the AU-NMF framework, we
discuss them in more detail in Sections 4.1 and 4.2.
The convergence properties of these di↵erent algorithms are

discussed in detail by Kim, He and Park [10]. We emphasize
here that both MU and HALS require computing Gram matrices
and matrix products of the input matrix and each factor matrix.
Therefore, if the update ordering follows the convention of
updating all of W followed by all of H, both methods fit into
the AU-NMF framework. We note that both MU and HALS are
defined for more general update orders, but for our purposes we
constrain them to be AU-NMF algorithms.
While we focus on three NMF algorithms in this paper,

we highlight that our framework is extensible to other NMF
algorithms, including those based on Alternating Direction
Method of Multipliers (ADMM) [35], Nesterov-based methods
[36], or any other method that fits the framework of Algorithm 1.

4.1 Multiplicative Update (MU)

In the case of MU [1], individual entries of W and H are updated
with all other entries fixed. In this case, the update rules are

wi j wi j
(AHT )i j

(WHHT )i j
, and

hi j hi j
(WTA)i j

(WTWH)i j
.

(3)

Instead of performing these (m+n)k in an arbitrary order, if all of
W is updated before H (or vice-versa), this method also follows
the AU-NMF framework. After computing the Gram matrices
HHT and WTW and the products AHT and WTA, the extra cost
of computing W(HHT ) and (WTW)H is F(m,n,k) = 2(m + n)k2
flops to perform updates for all entries of W and H, as the other
elementwise operations a↵ect only lower-order terms. Thus,

when MU is used, lines 3 and 4 in Algorithm 1 – and functions
UpdateW and UpdateH in Algorithms 2 and 3 – implement the
expressions in (3), given the previously computed matrices.

4.2 Hierarchical Alternating Least Squares (HALS)

In the case of HALS [7], [37], updates are performed on
individual columns of W and rows of H with all other entries in
the factor matrices fixed. This approach is a BCD method with 2k
blocks, set to minimize the function

f (w1,···,wk,h1,···,hk)=
�

�

�

�

�

�

�

A�
k
X

i=1

wihi

�

�

�

�

�

�

�

F

, (4)

where wi is the ith column of W and hi is the ith row of H. The
update rules [37, Algorithm 2] can be written in closed form:

wi 
h

wi+(AHT )i�W(HHT )i
i

+

wi wi

kwik , and

hi 
h

hi+(WTA)i�(WTW)iH
i

+
.

(5)

Note that the columns of W and rows of H are updated in
order, so that the most up-to-date values are always used, and
these 2k updates can be done in an arbitrary order. However,
if all the W updates are done before H (or vice-versa), the
method falls into the AU-NMF framework. After computing the
matrices HHT , AHT , WTW, and WTA, the extra computation is
F(m,n,k)=2(m+n)k2 flops for updating both W and H.
Thus, when HALS is used, lines 3 and 4 in Algorithm 1 –

and functions UpdateW and UpdateH in Algorithms 2 and 3 –
implement the expressions in (5), given the previously computed
matrices.

4.3 Alternating Nonnegative Least Squares with Block
Principal Pivoting

Block Principal Pivoting (BPP) is an active-set-like method for
solving the NLS subproblems in Eq. (2). The main subroutine of
BPP is the single right-hand side NLS problem

min
x>0
kCx�bk2. (6)

The Karush-Kuhn-Tucker (KKT) optimality conditions for
Eq. (6) are as follows

y=CTCx�CTb (7a)
x,y>0 (7b)
xiyi=0 8i. (7c)

The KKT conditions (7) states that at optimality, the support
sets (i.e., the non-zero elements) of x and y are complementary
to each other. Therefore, Eq. (7) is an instance of the Linear
Complementarity Problem (LCP) which arises frequently
in quadratic programming. When k ⌧ min(m, n), active-set
and active-set-like methods are very suitable because most
computations involve matrices of sizes m⇥k,n⇥k, and k⇥k which
are small and easy to handle.
If we knew which indices correspond to nonzero values in the

optimal solution, then computing the solution is an unconstrained
least squares problem on these indices. In the optimal solution, call
the set of indices i such that xi=0 the active set, and let the remain-
ing indices be the passive set. The BPP algorithm works to find this
final active set and passive set. It greedily swaps indices between
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Algorithm 2 [W,H]=Naive-Parallel-AUNMF(A,k)
Require: A is an m ⇥ n matrix distributed both row-wise and

column-wise across p processors, k is the approximation rank
Require: Local matrices: Ai is m/p ⇥ n, Ai is m ⇥ n/p, Wi is

m/p⇥k, Hi is k⇥n/p
1: pi initializes Hi

2: while stopping criteria not satisfied do
/* Compute W given H */

3: collect H on each processor using all-gather
4: pi computes Wi updateW(HHT ,AiHT )

/* Compute H given W */
5: collect W on each processor using all-gather
6: pi computes (Hi)T updateH(WTW,(WTAi)T )
7: end while

Ensure: W,H⇡ argmin
W̃>0,H̃>0

kA�W̃H̃k
Ensure: W is an m⇥ k matrix distributed row-wise across pro-

cessors, H is a k ⇥ n matrix distributed column-wise across
processors

the intermediate active and passive sets until finding a partition
that satisfies the KKT condition. In the partition of the optimal
solution, the values of the indices that belong to the active set will
take zero. The values of the indices that belong to the passive set
are determined by solving the unconstrained least squares problem
restricted to the passive set. Kim, He and Park [12], discuss the
BPP algorithm in further detail. We use the notation

X SolveBPP(CTC,CTB)

to define the (local) function for using BPP to solve Eq. (6)
for every column of X. We define CBPP(k, c) as the cost of
SolveBPP, given the k ⇥ k matrix CTC and k ⇥ c matrix CTB.
SolveBPP mainly involves solving least squares problems over
the intermediate passive sets. Our implementation uses the normal
equations to solve the unconstrained least squares problems
because the normal equations matrices have been pre-computed
in order to check the KKT condition. However, more numerically
stable methods such as QR decomposition can also be used.
Thus, when ABPP is used, lines 3 and 4 in Algorithm 1 –

and functions UpdateW and UpdateH in Algorithms 2 and 3 –
correspond to calls to SolveBPP. The number of flops involved
in SolveBPP is not a closed form expression; in this case
F(m,n,k)=CBPP(k,m)+CBPP(k,n).

5 Parallel Algorithms
5.1 Naive Parallel NMF Algorithm

In this section we present a naive parallelization of NMF
algorithms, which has previously appeared in the context of a
shared-memory parallel platform [32]. Each NLS problem with
multiple right-hand sides can be parallelized based on the observa-
tion that each right-hand side is independent from the others. For
example, we can solve several instances of Eq. (6) independently
for di↵erent b where C is fixed, which implies that we can
optimize row blocks of W and column blocks of H in parallel.
Algorithm 2 and Figure 1 present a straightforward approach

to parallelizing the independent subproblems. Let us divide W
into row blocks W1,...,Wp and H into column blocks H1,...,Hp.
We then double-partition the data matrix A accordingly into row
blocks A1,...,Ap and column blocks A1,...,Ap so that processor i

k

n

H

k

W1

W2

W3

m

m/p

m/p

m/p

A1

A2

A3

�

n

m

n/p n/p n/p

A1 A2 A3 � W

k H1 H2 H3

n/p n/p n/p
m

AL
L_
GA

TH
ER

ALL_GATHER

Wi ←updateW(HHT,AiHT)

(Hi)T ←	updateH(WTW,(WTAi)T)

Fig. 1: Naive-Parallel-AUNMF. Both rows and columns of A are
1D distributed. The algorithm works by (all-)gathering the entire
fixed factor matrix to each processor and then performing the
Local Update Computations to update the variable factor matrix.

owns both Ai and Ai (see Figure 1). With these partitions of the
data and the variables, one can implement any AU-NMF algorithm
in parallel, with only one communication step for each solve.
We summarize the algorithmic costs of Algorithm 2 (derived

in the following subsections) in Table 3. This naive algorithm
[32] has three main drawbacks: (1) it requires storing two copies
of the data matrix (one in row distribution and one in column
distribution) and both full factor matrices locally, (2) it does not
parallelize the computation of HHT and WTW (each processor
computes it redundantly), and (3) as we will see in Section 5.2, it
communicates more data than necessary.

5.1.1 Computation Cost
The computation cost of Algorithm 2 depends on the particular
NMF algorithm used. Thus, the computation at line 4 consists of
computingAiHT ,HHT , and performing the algorithm-specific Lo-
cal Update Computations for m/p rows of W. Likewise, the com-
putation at line 6 consists of computing WTAi, WTW, and per-
forming the Local Update Computations for n/p columns of H. In
the dense case, this amounts to 4mnk/p+(m+n)k2+F(m/p,n/p,k)
flops. Note that the first term has a constant 4 to account for both
WTA and AHT and that the second term has a constant factor
of 1 instead of 2 because the Gram computations (HHT and
WTW) exploit symmetry of the output matrix. In the sparse case,
processor i performs 2(nnz(Ai)+nnz(Ai))k flops to compute AiHT

and WTAi instead of 4mnk/p.

5.1.2 Communication Cost
The size of W is mk words, and the size of H is nk words. Thus,
the communication cost of the all-gathers at lines 3 and 5, based
on the expression given in Section 2.3 is ↵·2logp+�·(m+n)k.

5.1.3 Memory Requirements
The local memory requirement includes storing each processor’s
part of matrices A, W, and H. In the case of dense A, this is
2mn/p + (m + n)k/p words, as A is stored twice; in the sparse
case, processor i requires nnz(Ai) + nnz(Ai) words for the input
matrix and (m+n)k/p words for the output factor matrices. Local
memory is also required for storing temporary matrices W and H
of size (m+n)k words.
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Algorithm Flops Words Messages Memory
Naive-Parallel-AUNMF 4 mnk

p +(m+n)k2+F
⇣

m
p ,

n
p ,k
⌘

O((m+n)k) O(logp)⇤ O
⇣

mn
p +(m+n)k

⌘

MPI-FAUN (m/p>n) 4 mnk
p + (m+n)k2

p +F
⇣

m
p ,

n
p ,k
⌘

O(nk) O(logp)⇤ O
⇣

mn
p + mk

p +nk
⌘

MPI-FAUN (m/p<n) 4 mnk
p + (m+n)k2

p +F
⇣

m
p ,

n
p ,k
⌘

O
✓

q

mnk2
p

◆

O(logp)⇤ O
✓

mn
p +
q

mnk2
p

◆

Lower Bound � ⌦
✓

min
⇢

q

mnk2
p ,nk

�◆

⌦(logp) mn
p + (m+n)k

p

TABLE 3: Leading order algorithmic costs for Naive-Parallel-AUNMF and MPI-FAUN (per iteration). Note that the computation and
memory costs assume the data matrix A is dense, but the communication costs (words and messages) apply to both dense and sparse
cases. The function F(·) denotes the number of flops required for the particular NMF algorithm’s Local Update Computation, aside
from the matrix multiplications common across AU-NMF algorithms. Note that F(m,n,k) is proportional to m+n and not mn, so the
term in the table scales linearly with p (and not p2) for all LUC.
⇤The stated latency cost assumes no communication is required in LUC; HALS requires klogp messages for normalization steps.

5.2 MPI-FAUN

We present our proposed algorithm, MPI-FAUN, as Algorithm
3. The main ideas of the algorithm are to (1) exploit the
independence of Local Update Computations for rows of
W and columns of H and (2) use communication-optimal
matrix multiplication algorithms to set up the Local Update
Computations. The naive approach (Algorithm 2) shares the
first property, by parallelizing over rows of W and columns
of H, but it uses parallel matrix multiplication algorithms that
communicate more data than necessary. The central intuition for
communication-e�cient parallel algorithms for computing HHT ,
AHT , WTW, and WTA comes from a classification proposed by
Demmel et al. [38]. They consider three cases, depending on the
relative sizes of the dimensions of the matrices and the number of
processors; the four multiplies for NMF fall into either the “one
large dimension” or “two large dimensions” cases. MPI-FAUN
uses a careful data distribution in order to use a communication-
optimal algorithm for each of the matrix multiplications, while at
the same time exploiting the parallelism in the LUC.
The algorithm uses a 2D distribution of the data matrix A across

a pr⇥pc grid of processors (with p= pr pc), as shown in Figure 2.
As we derive in the subsequent subsections, Algorithm 3 performs
an alternating method in parallel with a per-iteration bandwidth
cost of O

⇣

min
n

p

mnk2/p,nk
o⌘

words, latency cost of O(log p)
messages, and load-balanced computation (up to the sparsity
pattern of A and convergence rates of local BPP computations).

The main improvement of MPI-FAUN over Naive involves the
computation of AHT and WTA. By using a 2D distribution of the
data matrix, no processor needs access to all of one factor matrix,
as in the case of Naive, where each processor must access either
all m rows of W or all n columns of H. Instead, with MPI-FAUN,
each processor must access only m/pr of the rows of W and
n/pc of the columns of H, so the number of rows decreases as
p increases. This implies the communication cost is reduced, as
verified empirically in Figure 7 (the extreme cases correspond to
1D distributions).
To minimize the communication cost and local memory

requirements, in the typical case pr and pc are chosen so that
m/pr ⇡ n/pc ⇡

p

mn/p, in which case the bandwidth cost is
O
⇣

p

mnk2/p
⌘

. If the matrix is very tall and skinny, i.e., m/p> n,
then we choose pr = p and pc = 1. In this case, the distribution of
the data matrix is 1D, and the bandwidth cost is O(nk) words.

The matrix distributions for Algorithm 3 are given in Figure
2; we use a 2D distribution of A and 1D distributions of W and
H. Recall from Table 2 that Mi and Mi denote row and column
blocks of M, respectively. Thus, the notation (Wi) j denotes the
jth row block within the ith row block of W. Lines 3–8 compute

Algorithm 3 [W,H]=MPI-FAUN(A,k)
Require: A is an m ⇥ n matrix distributed across a pr ⇥ pc grid of

processors, k is rank of approximation
Require: Local matrices: Ai j is m/pr⇥n/pc, Wi is m/pr⇥k, (Wi) j is

m/p⇥k, H j is k⇥n/pc, and (H j)i is k⇥n/p
1: pi j initializes (H j)i
2: while stopping criteria not satisfied do

/* Compute W given H */
3: pi j computes Ui j= (H j)i(H j)iT
4: compute HHT=

P

i, jUi j using all-reduce across all procs .
HHT is k⇥k and symmetric

5: pi j collects H j using all-gather across proc columns
6: pi j computes Vi j=Ai jHT

j . Vi j is m/pr⇥k
7: compute (AHT )i=

P

jVi j using reduce-scatter across proc row
to achieve row-wise distribution of (AHT )i . pi j owns m/p⇥k
submatrix ((AHT )i) j

8: pi j computes (Wi) j UpdateW (HHT ,((AHT )i) j)
/* Compute H given W */

9: pi j computes Xi j= (Wi) jT (Wi) j
10: compute WTW=

P

i, jXi j using all-reduce across all procs .
WTW is k⇥k and symmetric

11: pi j collects Wi using all-gather across proc rows
12: pi j computes Yi j=Wi

TAi j . Yi j is k⇥n/pc
13: compute (WTA) j =

P

iYi j using reduce-scatter across proc
columns to achieve column-wise distribution of (WTA) j . pi j
owns k⇥n/p submatrix ((WTA) j)i

14: pi j computes ((H j)i)T UpdateH (WTW,(((WTA) j)i)T )
15: end while
Ensure: W,H⇡ argmin

W̃>0,H̃>0
kA�W̃H̃k

Ensure: W is an m⇥k matrix distributed row-wise across processors,
H is a k⇥n matrix distributed column-wise across processors

W for a fixed H, and lines 9–14 compute H for a fixed W; note
that the computations and communication patterns for the two
alternating iterations are analogous.
In the rest of this section, we derive the per-iteration com-

putation and communication costs, as well as the local memory
requirements. We also argue the communication-optimality of the
algorithm in the dense case. Table 3 summarizes the results of
this section and compares them to Naive-Parallel-AUNMF.

5.2.1 Computation Cost

Local matrix computations occur at lines 3, 6, 9, and 12. In the
case that A is dense, each processor performs

n
p
k2+2

m
pr

n
pc
k+

m
p
k2+2

m
pr

n
pc
k=4

mnk
p

+
(m+n)k2

p
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Fig. 2: Data distributions for MPI-FAUN. 1D Distribution on left
with p= pr=4 and pc=1. 2D Distribution on right with pr=3 and
pc=2 Note that for the 2D distribution, Ai j is m/pr⇥m/pc, Wi is
m/pr⇥k, (Wi) j is m/p⇥k, H j is k⇥n/pc, and (H j)i is k⇥n/p.

flops. Recall that the second term on the right hand side has
a constant factor of 1 instead of 2 because the local Gram
computations (lines 3 and 9) exploit symmetry. In the case that A
is sparse, processor (i, j) performs (m+n)k2/p flops in computing
Ui j and Xi j, and 4nnz(Ai j)k flops in computing Vi j and Yi j. Local
update computations occur at lines 8 and 14. In each case, the
symmetric positive semi-definite matrix is k ⇥ k and the number
of columns/rows of length k to be computed are m/p and n/p,
respectively. These costs together are given by F(m/p, n/p, k).
There are computation costs associated with the all-reduce and
reduce-scatter collectives (see Section 2.3), both those contribute
only to lower order terms: O(k2+mk/pr+nk/pc).

5.2.2 Communication Cost

Communication occurs during six collective operations (lines 4, 5,
7, 10, 11, and 13). We use the cost expressions presented in Sec-
tion 2.3 for these collectives. The communication cost of the all-
reduces (lines 4 and 10) is ↵·4logp+�·2k2; the cost of the two all-
gathers (lines 5 and 11) is ↵·logp+�·((pr�1)nk/p+(pc�1)mk/p);
and the cost of the two reduce-scatters (lines 7 and 13) is
↵·logp+�·((pc�1)mk/p+(pr�1)nk/p).

We note that LUC may introduce significant communication
cost, depending on the NMF algorithm used. The normalization
of columns of W within HALS, for example, introduces an extra
k log p latency cost. We will ignore such costs in our general
analysis.
In the case that m/p < n, we choose pr =

p

mp/n > 1
and pc =

p

np/m > 1, and these communication costs
simplify to ↵ · O(log p) + � · O(mk/pr + nk/pc + k2) =

↵ · O(log p) + � · O(
p

mnk2/p + k2). In the case that m/p > n,
we choose pc=1, and the costs simplify to ↵·O(logp)+�·O(nk).

5.2.3 Memory Requirements
The local memory requirement includes storing each processor’s
part of matrices A, W, and H. In the case of dense A, this is
mn/p + (m + n)k/p words; in the sparse case, processor (i, j)
requires nnz(Ai j) words for the input matrix and (m+n)k/p words
for the output factor matrices. Local memory is also required
for storing temporary matrices W j, Hi, Vi j, and Yi j, of size
2mk/pr+2nk/pc words.

In the dense case, assuming k < n/pc and k < m/pr, the local
memory requirement is no more than a constant times the size
of the original data. For the optimal choices of pr and pc, this
assumption simplifies to k < max

n

p

mn/p,m/p
o

. Note that the
second argument of the max applies when the optimal distribution
is 1D (pr= p).
We note that if the temporary memory requirements become

prohibitive, the computation of ((AHT )i) j and ((WTA) j)i via
all-gathers and reduce-scatters can be blocked, decreasing the
local memory requirements at the expense of greater latency costs.
When A is sparse and k is large enough, the memory footprint
of the factor matrices can be larger than the input matrix. In
this case, the extra temporary memory requirements can become
prohibitive; we observed this for a sparse data set with very large
dimensions (see Section 6.3.5). We leave the implementation of
the blocked algorithm to future work.

5.2.4 Communication Optimality
In the case that A is dense, Algorithm 3 provably minimizes
communication costs. Theorem 5.1 establishes the bandwidth
cost lower bound for any algorithm that computes WTA or AHT

each iteration. A latency lower bound of ⌦(log p) exists in our
communication model for any algorithm that aggregates global
information [19]. For NMF, this global aggregation is necessary
in each iteration, for example, in order to compute residual
error in the case that A is distributed across all p processors,
because all processors have data that must be accumulated into
the global error. Based on the costs derived above, MPI-FAUN
is communication optimal under the assumption k <

p

mn/p,
matching these lower bounds to within constant factors.
Theorem 5.1 ([38]). Let A 2 Rm⇥n, W 2 Rm⇥k, and H 2 Rk⇥n

be dense matrices, with k < n 6 m. If k <
p

mn/p, then any
distributed-memory parallel algorithm on p processors that
load balances the matrix distributions and computes WTA
and/or AHT must communicate at least ⌦(min{

p

mnk2/p,nk})
words along its critical path.

Proof The proof follows directly from [38, Section II.B]. Each
matrix multiplication WTA and AHT has dimensions k < n6 m,
so the assumption k <

p

mn/p ensures that neither multiplication
has “3 large dimensions.” Thus, the communication lower bound
is either ⌦(

p

mnk2/p) in the case of p > m/n (or “2 large
dimensions”), or ⌦(nk), in the case of p < m/n (or “1 large
dimension”). If p<m/n, then nk<

p

mnk2/p, so the lower bound
can be written as ⌦(min{

p

mnk2/p,nk}).
We note that the communication costs of Algorithm 3 are the

same for dense and sparse data matrices (the data matrix itself is
never communicated). In the case that A is sparse, this communi-
cation lower bound does not necessarily apply, as the required data
movement depends on the sparsity pattern of A. Thus, we cannot
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Fig. 3: Parallel matrix multiplications within MPI-FAUN for finding H given W, with pr = 3 and pc = 2. The computation of WTW
appears on the far left; the rest of the figure depicts computation of WTA.

make claims of optimality in the sparse case (for general A). The
communication lower bounds for WTA and/or AHT (where A is
sparse) can be expressed in terms of hypergraphs that encode the
sparsity structure of A [39]. Indeed, hypergraph partitioners have
been used to reduce communication and achieve load balance for a
similar problem: computing a low-rank representation of a sparse
tensor (without non-negativity constraints on the factors) [40].

6 Experiments
In this section, we describe our implementation of MPI-FAUN
and evaluate its performance. We identify a few synthetic and real
world data sets to experiment with MPI-FAUN with dimensions
that span from hundreds to millions. We compare the performance
and exploring scaling behavior of di↵erent NMF algorithms
– MU, HALS, and ANLS/BPP (ABPP), implemented using
the parallel MPI-FAUN framework. The code and the datasets
used for conducting the experiments can be downloaded from
https://github.com/ramkikannan/nmflibrary.

6.1 Experimental Setup

6.1.1 Data Sets

We used sparse and dense matrices that are either synthetically
generated or from real world applications. We explain the data
sets in this section.
• Dense Synthetic Matrix: We generate a low rank matrix as the
product of two uniform random matrices of size 207,360 ⇥ 100
and 100 ⇥ 138,240. The dimensions of this matrix are chosen
to be evenly divisible for a particular set of processor grids.

• Sparse Synthetic Matrix: We generate a random sparse Erdős-
Rényi matrix of the size 207,360 ⇥ 138,240 with density of
0.001. That is, every entry is nonzero with probability 0.001.

• Dense Real World Matrix (Video): NMF is used on video data
for background subtraction in order to detect moving objects.
The low rank matrix Â=WH represents background and the er-
ror matrix A�Â represents moving objects. In the case of detect-
ing moving objects in streaming videos, the last several minutes

of video is taken from the live video camera to construct the non-
negative matrix. An algorithm to incrementally adjust the NMF
based on the streaming video is presented in [10]. To simulate
this scenario, we collected a video in a busy intersection of the
Georgia Tech campus at 20 frames per second. From this video,
we took video for approximately 12 minutes and then reshaped
the matrix such that every RGB frame is a column of our matrix,
so that the matrix is dense with size 1,013,400 ⇥ 13,824.

• Sparse Real World Matrix (Webbase): This data set is a directed
sparse graph whose nodes correspond to webpages (URLs) and
edges correspond to hyperlinks from one webpage to another.
The NMF output of this directed graph helps us understand
clusters in graphs. We consider two versions of the data set:
webbase-1M and webbase-2001. The dataset webbase-1M
contains about 1 million nodes (1,000,005) and 3.1 million
edges (3,105,536), and was first reported by Williams et al.
[41]. The version webbase-2001 has about 118 million nodes
(118,142,155) and over 1 billion edges (1,019,903,190); it
was first reported by Boldi and Vigna [42]. Both data sets are
available in the University of Florida Sparse Matrix Collection
[43] and the latter webbase-2001 being the largest among the
entire collection.

• Text data (Stack Exchange): Stack Exchange is a network of
question-and-answer websites on topics in varied fields, each
site covering a specific topic, where questions, answers, and
users are subject to a reputation award process. There are
many Stack Exchange forums, such as ask ubuntu, mathematics,
latex. We downloaded the latest anonymized dump of all user-
contributed content on the Stack Exchange network from [44].
We used only the questions from the most popular site called
Stackoverflow and did not include the answers and comments.
We removed the standard 571 English stop words (such as are,
am, be, above, below) and then used snowball stemming avail-
able through the Natural Language Toolkit (NLTK) package
[45]. After this initial pre-processing, we deleted HTML tags
(such as lt, gt, em) from the posts. The resulting bag-of-words
matrix has a vocabulary of size 627,047 over 11,708,841 doc-
uments with 365,168,945 non-zero entries. In this data, the vo-

https://github.com/ramkikannan/nmflibrary
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cabulary is larger than the typical set of English words because it
includes variables, constants, and other programming constructs
of various programming languages from the user questions.
The size of all the real world data sets were adjusted to the

nearest size for uniformly distributing the matrix.

6.1.2 Implementation Platform
We conducted our experiments on “Rhea” at the Oak Ridge
Leadership Computing Facility (OLCF). Rhea is a commodity-
type Linux cluster with a total of 512 nodes and a 4X FDR
Infiniband interconnect. Each node contains dual-socket 8-core
Intel Sandy Bridge-EP processors and 128 GB of memory. Each
socket has a shared 20MB L3 cache, and each core has a private
256K L2 cache.
Our objective of the implementation is using open source

software as much as possible to promote reproducibility and reuse
of our code. The entire C++ code is developed using the matrix
library Armadillo [46]. In Armadillo, the elements of the dense
matrix are stored in column major order and the sparse matrices
in Compressed Sparse Column (CSC) format. For dense BLAS
and LAPACK operations, we linked Armadillo with Intel MKL
– the default LAPACK/BLAS library in RHEA. It is also easy to
link Armadillo with OpenBLAS [47]. We use Armadillo’s own
implementation of sparse matrix-dense matrix multiplication, the
default GNU C++ Compiler (g++ (GCC) 4.8.2) and MPI library
(Open MPI 1.8.4) on RHEA. We chose the commodity cluster
with open source software so that the numbers presented here are
representative of common use.

6.1.3 Algorithms
In our experiments, we considered the following algorithms:
• MU: MPI-FAUN (Algorithm 3) with MU (Equation (3))
• HALS: MPI-FAUN (Algorithm 3) with HALS (Equation (5))
• ABPP: MPI-FAUN (Algorithm 3) with BPP (Section 4.3)
• Naive: Naive-Parallel-AUNMF (Algorithm 2, Section 5.1)
Our implementation of Naive (Algorithm 2) uses BPP but can

be easily to extended to MU, HALS, and other NMF algorithms.
For the algorithms based on MPI-FAUN, we use the processor

grid that is closest to the theoretical optimum (see Section 5.2.2)
in order to minimize communication costs. See Section 6.3.4 for
an empirical evaluation of varying processor grids for a particular
algorithm and data set.
To ensure fair comparison among algorithms, the same random

seed is used across di↵erent methods appropriately. That is, the
initial random matrix H is generated with the same random seed
when testing with di↵erent algorithms (note that W need not be
initialized). In our experiments, we use number of iterations as
the stopping criteria for all the algorithms.
While we would like to compare against other high-

performance NMF algorithms in the literature, the only other
distributed-memory implementations of which we’re aware are
implemented using Hadoop and are designed only for sparse
matrices [24], [27], [13], [26] and [25]. We stress that Hadoop
is not designed for high performance computing of iterative
numerical algorithms, requiring disk I/O between steps, so a
run time comparison between a Hadoop implementation and a
C++/MPI implementation is not a fair comparison of parallel
algorithms. A qualitative example of di↵erences in run time is
that a Hadoop implementation of the MU algorithm on a large
sparse matrix of size 217 ⇥ 216 with 2⇥ 108 nonzeros (with k=8)
takes on the order of 50 minutes per iteration [27], while our MU

implementation takes 0.065 seconds per iteration for the synthetic
data set (which is an order of magnitude larger in terms of rows,
columns, and nonzeros) running on only 16 nodes.

6.2 Relative Error over Time

There are various metrics to compare the quality of the NMF
algorithms [10]. The most common among these metrics are (a)
relative error and (b) projected gradient. The former represents
the closeness of the low rank approximation Â ⇡ WH, which
is generally the optimization objective. The latter represent the
quality of the produced low rank factors and the stationarity of
the final solution. These metrics are also used as the stopping
criterion for terminating the iteration of the NMF algorithm as
in line 2 of Algorithm 1. Typically a combination of the number
of iterations along with improvement of these metrics until a
tolerance is met is used as stopping criterion. In this paper,
we use relative error for the comparison as it is monotonically
decreasing, as opposed to projected gradient of the low rank
factors, which shows oscillations over iterations. The relative
error can be formally defined as kA�WHkF/kAkF .

In Figure 4, we measure the relative error at the end of every
iteration (i.e., after the updates of bothW andH) for all three algo-
rithmsMU, HALS, and ABPP, and we plot the relative error over
time (each mark represents an iteration). We consider three real
world datasets, video, stack exchange and webbase-1M, and set
k=50. We used only the number of iterations as stopping criterion
and, just for this section, ran all the algorithms for 30 iterations.
We note that the convergence behavior and computed factors can
vary over di↵erent initializations; we used the same initial values
across all three algorithms in these experiments. Also, we observed
that for these data sets, the convergence behavior was not sensitive
to initialization (the final residual errors varied by less than 1% in
our experiments). NMF solutions are guaranteed to be unique in
certain cases, with mild assumptions on the input data [48], [49],
but we do not check those assumptions for these datasets.
To begin with, we explain the observations on the dense video

dataset presented in Figure 4a. The relative error of MU is highest
at 0.1812 after 30 iterations and HALS’s is the least with 0.1273.
ABPP’s relative error was 0.1716 and if ran longer ABPP would
have converged similar to HALS.
We can observe that the relative error of stack exchange from

Figure 4b is better than webbase-1M from Figure 4c over all
three algorithms. In the case of the stack exchange dataset, the
relative errors after 30 iterations follow the pattern MU > HALS
> ABPP, with values 0.8509, 0.8395, and 0.8377 respectively.
However, the di↵erence in relative error for the webbase-1M
dataset is negligible, though the relative ordering of MU > HALS
> ABPP is consistent, with values of 0.99927 for MU 0.99920
for HALS and 0.99919 for ABPP.

In general, for these datasets ABPP identifies better
approximations and converges faster than MU and HALS
despite the extra per-iteration time, which is consistent with
the literature [10], [12]. However, for the sparse datasets, the
di↵erences in relative error are small across the NMF algorithms.

6.3 Time Per Iteration

In this section we focus on per-iteration time of all the algorithms.
We report four types of experiments, varying the number of
processors (Section 6.3.2), the rank of the approximation (Section
6.3.3), the shape of the processor grid (Section 6.3.4), and scaling
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Fig. 4: Relative error comparison of MU, HALS, ABPP on real
world datasets.

up the dataset size. For each experiment we report a time break-
down in terms of the overall computation and communication
steps (described in Section 6.3.1) shared by all algorithms.

6.3.1 Time Breakdown

To di↵erentiate the computation and communication costs among
the algorithms, we present the time breakdown among the various
tasks within the algorithms for all performance experiments. For
Algorithm 3, there are three local computation tasks and three
communication tasks to compute each of the factor matrices:

• MM, computing a matrix multiplication with the local data
matrix and one of the factor matrices;

• LUC, local updates either using ABPP or applying the
remaining work of the MU or HALS updates (i.e., the total
time for both UpdateW and UpdateH functions);

• Gram, computing the local contribution to the Gram matrix;
• All-Gather, to compute the global matrix multiplication;
• Reduce-Scatter, to compute the global matrix multiplication;
• All-Reduce, to compute the global Gram matrix.

In our results, we do not distinguish the costs of these tasks for
W and H separately; we report their sum, though we note that we
do not always expect balance between the two contributions for
each task. Algorithm 2 performs all of these tasks except Reduce-
Scatter and All-Reduce; all of its communication is in All-Gather.

6.3.2 Scaling p: Strong Scaling

Figure 5 presents a strong scaling experiment with four data sets:
sparse synthetic, dense synthetic, webbase-1M, and video. In this
experiment, for each data set and algorithm, we use low rank
k = 50 and vary the number of processors (with fixed problem
size). We use {1, 6, 24, 54, 96} nodes; since each node has 16
cores, this corresponds to {16,96,384,864,1536} cores. We report
average per-iteration times.
We highlight three main observations from these experiments:

1) Naive is slower than all other algorithms for large p;
2) MU, HALS, and ABPP (algorithms based on MPI-FAUN)

scale up to over 1000 processors;
3) the relative per-iteration cost of LUC decreases as p increases

(for all algorithms), and therefore the extra per-iteration cost of
ABPP (compared with MU and HALS) becomes negligible.

6.3.2.1 Observation 1: For the Sparse Synthetic data set,
Naive is 4.2⇥ slower than the fastest algorithm (ABPP) on 1536
processors; for the Dense Synthetic data set, Naive is 1.6⇥ slower
than the fastest algorithm (MU) at that scale. The slowdown
increases to 7.7⇥ and 3.6⇥ for the sparse and dense real-world
datasets, respectively. Nearly all of this slowdown is due to the
communication costs of Naive. Theoretical and practical evidence
supporting the first observation is also reported in our previous
paper [17]. However, we also note that Naive is the fastest
algorithm for the smallest p for each problem, which is largely
due to reduced MM time. Each algorithm performs exactly the
same number of flops per MM; the e�ciency of Naive for small
p is due to cache e↵ects. For example, for the Dense Synthetic
problem on 96 processors, the output matrix of Naive’s MM fits
in L2 cache, but the output matrix of MPI-FAUN’s MM does not;
these e↵ects disappear as p increases.

6.3.2.2 Observation 2: Algorithms based on MPI-FAUN
(MU, HALS, ABPP) scale well, up to over 1000 processors. All
algorithms’ run times decrease as p increases, with the exception
of the Sparse Real World data set, in which case all algorithms
slow down scaling from p=864 to p=1536 (we attribute this lack
of scaling to load imbalance). For sparse problems, comparing
p=16 to p=1536 (a factor increase of 96), we observe speedups
from ABPP of 59⇥ (synthetic) and 22⇥ (real world). For dense
problems, comparing p = 96 to p = 1536 (a factor increase of
16), ABPP’s speedup is 12⇥ for both problems. MU and HALS
demonstrate similar scaling results. For comparison, speedups for
Naive were 8⇥ and 3⇥ (sparse) and 6⇥ and 4⇥ (dense).

6.3.2.3 Observation 3: MU, HALS, and ABPP share all
the same subroutines except those that are characterized as LUC.
Considering only LUC subroutines, MU and HALS require
fewer operations than ABPP. However, HALS has to make one
additional communication for normalization of W. For small p,
these cost di↵erences are apparent in Figure 5. For example, for
the sparse real world data set on 16 processors, ABPP’s LUC time
is 16⇥ that of MU, and the per iteration time di↵ers by a factor
of 4.5. However, as p increases, the relative time spent in LUC
decreases, so the extra time taken by ABPP has less of an e↵ect
on the total per iteration time. By contrast, for the dense real world
data set on 1536 processors, ABPP spends a factor of 27 times
more time in LUC thanMU but only 11% longer over the entire it-
eration. For the synthetic data sets, LUC takes 24% (sparse) on 16
processors and 84% (dense) on 96 processors, and that percentage
drops to 11% (sparse) and 15% (dense) on 1536 processors.
These trends can also be seen theoretically (Table 3). We expect

local computations like MM, LUC, and Gram to scale like 1/p,
assuming load balance is preserved. If communication costs are
dominated by the number of words being communicated (i.e.,
the communication is bandwidth bound), then we expect time
spent in communication to scale like 1/pp, and at least for dense
problems, this scaling is the best possible. Thus, communication
costs will eventually dominate computation costs for all NMF
problems, for su�ciently large p. (Note that if communication is
latency bound and proportional to the number of messages, then
time spent communicating actually increases with p.)
The overall conclusion from this empirical and theoretical

observation is that the extra per-iteration cost of ABPP over
alternatives like MU and HALS decreases as the number of
processors p increases. As shown in Section 6.2 the faster error
reduction of ABPP typically reduces the overall time to solution
compared with the alternatives even it requires more time for
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Fig. 5: Per-iteration times with k=50, varying p (strong scaling).

each iteration. Our conclusion is that as we scale up p, this
tradeo↵ is further relaxed so that ABPP becomes more and more
advantageous for both quality and performance.

6.3.3 Scaling k
Figure 6 presents an experiment scaling up the low rank value k
from 10 to 50 with each of the four data sets. In this experiment,
for each data set and algorithm, the problem size is fixed and the
number of processors is fixed to p= 864. As in Section 6.3.2, we
report the average per-iteration times.

We highlight two observations from these experiments:
1) Naive is plagued by communication time that increases

linearly with k;
2) ABPP’s time increases more quickly with k than those of MU

or HALS;
6.3.3.1 Observation 1: We see from the synthetic data sets

(Figures 6a and 6b) that the overall time of Naive increases more
rapidly with k than any other algorithm and that the increase
in time is due mainly to communication (All-Gather). Table 3
predicts that Naive communication volume scales linearly with
k, and we see that in practice the prediction is almost perfect with
the synthetic problems. This confirms that the communication
is dominated by bandwidth costs and not latency costs (which
are constant with respect to k). We note that the communication
cost of MPI-FAUN scales like

p
k, which is why we don’t see as

dramatic an increase in communication time for MU, HALS, or
ABPP in Figure 6.

6.3.3.2 Observation 2: Focusing attention on time spent
in LUC computations, we can compare how MU, HALS, and
ABPP scale di↵erently with k. We see a more rapid increase
of LUC time for ABPP than MU or HALS; this is expected
because the LUC computations unique to ABPP require between
O(k3) and O(k4) operations (depending on the data) while the
unique LUC computations for MU and HALS are O(k2), with
all other parameters fixed. Thus, the extra per-iteration cost of
ABPP increases with k, so the advantage of ABPP of better
error reduction must also increase with k for it to remain superior
at large values of k. We also note that although the number of
operations within MM grows linearly with k, we do not observe
much increase in time from k = 10 to k = 50; this is due to the
improved e�ciency of local MM for larger values of k.

6.3.4 Varying Processor Grid

In this section we demonstrate the e↵ect of the dimensions of the
processor grid on per-iteration performance. For a fixed total num-
ber of processors p, the communication cost of Algorithm 3 varies
with the choice of pr and pc. To minimize the amount of data
communicated, the theoretical analysis suggests that the processor
grid should be chosen to make the sizes of the local data matrix as
square as possible. This implies that if m/p>n, pr= p and pc=1 is
the optimal choice (a 1D processor grid); likewise if n/p>m then
a 1D processor grid with pr = 1 and pc = p is the optimal choice.
Otherwise, a 2D processor grid minimizes communication with
pr⇡
p

mp/n and pc⇡
p

np/m (subject to integrality and pr pc= p).
Figure 7 presents a benchmark of ABPP for the Sparse

Synthetic data set for fixed values of p and k. We vary the
processor grid dimensions from both 1D grids to the 2D grid
that matches the theoretical optimum exactly. Because the sizes
of the Sparse Synthetic matrix are 172,800 ⇥ 115,200 and the
number of processors is 1536, the theoretically optimal grid is
pr =
p

mp/n= 48 and pc =
p

np/m= 32. The experimental results
confirm that this processor grid is optimal, and we see that the
time spent communicating increases as the processor grid deviates
from the optimum, with the 1D grids performing the worst.

6.3.5 Scaling up to Very Large Sparse Datasets

In this section, we test MPI-FAUN by scaling up the problem
size. While we’ve used webbase-1M in previous experiments, we
consider webbase-2001 in this section as it is the largest sparse
data in University of Florida Sparse Matrix Collection [43]. The
former dataset has about 1 million nodes and 3 million edges,
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Fig. 6: Per-iteration times with p=864, varying low rank k.

whereas the latter dataset has over 100 million nodes and 1 billion
edges (see Section 6.1.1 for more details). Not only is the size of
the input matrix increased by two orders of magnitude (because
of the increase in the number of edges), but also the size of the
output matrices is increased by two orders of magnitude (because
of the increase in the number of nodes).
In fact, with a low rank of k=50, the size of the output matrices

dominates that of the input matrix: W and H together require a
total of 88 GB, while A (stored in compressed column format)
is only 16 GB. At this scale, because each node (consisting of 16
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Fig. 7: Tuning processor grid for ABPP on Sparse Synthetic data
set with p=1536 and k=50.

cores) of Rhea has 128 GB of memory, multiple nodes are required
to store the input and output matrices with room for other interme-
diate values. As mentioned in Section 5.2.3, MPI-FAUN requires
considerably more temporary memory than necessary when the
output matrices require more memory than the input matrix. While
we were not limited by this property for the other sparse matrices,
the webbase-2001 matrix dimensions are so large that we need the
memories of tens of nodes to run the algorithm. Thus, we report re-
sults only for the largest number of processors in our experiments:
1536 processors (96 nodes). The extra temporary memory used by
MPI-FAUN is a latency-minimizing optimization; the algorithm
can be updated to avoid this extra memory cost using a blocked
matrix multiplication algorithm. The extra memory can be reduced
to a negligible amount at the expense of more messages between
processors and synchronizations across the parallel machine.
We present results for webbase-2001 in Figure 8. The average

per-iteration timing results are consistent with the observations
from other synthetic and real world sparse datasets as discussed
in Section 6.3.2, though the raw times are about 2 orders of
magnitude larger, as expected. In the case of the error plot, as ob-
served in other experiments, ABPP achieves smaller error (by 1%)
than other algorithms after converging; however MU and HALS
initially outperform ABPP. We also see that MU outperforms
HALS in the first 30 iterations. At the 30th iteration, the error
for HALS is still improving at the third decimal, whereas MU’s
is improving at the fourth decimal. We suspect that over a greater
number of iterations the error of HALS could become smaller than
that of MU, which would be more consistent with other datasets.

6.4 Interpretation of Results

We present results from two of the real world datasets in the
Supplemental Material. The first example shows background
separation of the video data, and the second example shows topic
modeling output on the stack exchange text dataset. The details of
these datasets are presented in Section 6.1.1.
While the literature covers more detail about fine tuning

NMF and di↵erent NMF variants for higher quality results on
these two tasks, our main focus is to show how quickly we can
produce baseline NMF solutions. In Figure 1 of the Supplemental
Material, we can see the background is removed and the moving
objects (e.g., cars) are visible. Similarly, Table 1 of Supplemental
Material shows that the NMF solution discriminates among topics
and and finds coherent keywords for each topic.
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processors.

7 Conclusion

In this paper, we propose a high-performance distributed-memory
parallel framework for NMF algorithms that iteratively update
the low rank factors in an alternating fashion. Our parallelization
scheme is designed to avoid communication overheads and scales
well to over 1500 cores. The framework is flexible, being (a)
expressive enough to leverage many di↵erent NMF algorithms
and (b) e�cient for both sparse and dense matrices of sizes
that span from a few hundreds to hundreds of millions. Our
open-source software implementation is available for download.
For solving data mining problems at today’s scale, parallel

computation and distributed-memory systems are becoming
prerequisites. We argue in this paper that by using techniques
from high-performance computing, the computations for NMF
can be performed very e�ciently. Our framework allows for the
HPC techniques (e�cient matrix multiplication) to be separated
from the data mining techniques (choice of NMF algorithm), and
we compare data mining techniques at large scale, in terms of
data sizes and number of processors. One conclusion we draw
from the empirical and theoretical observations is that the extra
per-iteration cost of ABPP over alternatives like MU and HALS
decreases as the number of processors p increases, making ABPP
more advantageous in terms of both quality and performance at
larger scales. By reporting time breakdowns that separate local
computation from interprocessor communication, we also see
that our parallelization scheme prevents communication from
bottlenecking the overall computation; our comparison with a
naive approach shows that communication can easily dominate
the running time of each iteration.
In future work, we would like to extend MPI-FAUN algo-

rithm to dense and sparse tensors, computing the CANDE-
COMP/PARAFAC decomposition in parallel with non-negativity
constraints on the factor matrices. We plan on extending our soft-
ware to include more NMF algorithms that fit the AU-NMF frame-
work; these can be used for both matrices and tensors. We would
also like to explore more intelligent distributions of sparse matri-
ces: while our 2D distribution is based on evenly dividing rows and
columns, it does not necessarily load balance the nonzeros of the
matrix, which can lead to load imbalance in matrix multiplications.
We are interested in using graph and hypergraph partitioning
techniques to load balance the memory and computation while at
the same time reducing communication costs as much as possible.

8 Acknowledgements
This material is based upon work supported by the National Science
Foundation Graduate Research Fellowship under Grant No. OAC-
1642385. This manuscript has been co-authored by UT-Battelle, LLC
under Contract No. DE-AC05-00OR22725 with the U.S. Department
of Energy. This project was partially funded by the Laboratory
Director’s Research and Development fund. This research used
resources of the Oak Ridge Leadership Computing Facility at the
Oak Ridge National Laboratory, which is supported by the O�ce of
Science of the U.S. Department of Energy.

Also, partial funding for this work was provided by AFOSR
Grant FA9550-13-1-0100, National Science Foundation (NSF)
grants IIS-1348152, ACI-1338745, and ACI-1642385, Defense
Advanced Research Projects Agency (DARPA) XDATA program
grant FA8750-12-2-0309. Any opinions, findings and conclusions or
recommendations expressed in this material are those of the authors
and do not necessarily reflect the views of the USDOE, NERSC,
AFOSR, NSF or DARPA.

References
[1] D. Seung and L. Lee, “Algorithms for non-negative matrix factorization,”

NIPS, vol. 13, pp. 556–562, 2001.
[2] V. P. Pauca, F. Shahnaz, M. W. Berry, and R. J. Plemmons, “Text mining

using nonnegative matrix factorizations,” in Proceedings of SDM, 2004.
[3] P. O. Hoyer, “Non-negative matrix factorization with sparseness

constraints,” JMLR, vol. 5, pp. 1457–1469, 2004. [Online]. Available:
www.jmlr.org/papers/volume5/hoyer04a/hoyer04a.pdf

[4] R. Fujimoto, A. Guin, M. Hunter, H. Park, G. Kanitkar,
R. Kannan, M. Milholen, S. Neal, and P. Pecher, “A dynamic
data driven application system for vehicle tracking,” Procedia
Computer Science, vol. 29, pp. 1203–1215, 2014. [Online]. Available:
http://dx.doi.org/10.1016/j.procs.2014.05.108

[5] T. Bouwmans, A. Sobral, S. Javed, S. K. Jung, and E.-H. Zahzah,
“Decomposition into low-rank plus additive matrices for back-
ground/foreground separation: A review for a comparative evaluation
with a large-scale dataset,” arXiv preprint arXiv:1511.01245, 2015.

[6] H. Kim and H. Park, “Sparse non-negative matrix factorizations
via alternating non-negativity-constrained least squares for microarray
data analysis,” Bioinformatics, vol. 23, no. 12, pp. 1495–1502, 2007.
[Online]. Available: http://dx.doi.org/10.1093/bioinformatics/btm134

[7] A. Cichocki, R. Zdunek, A. H. Phan, and S.-i. Amari, Nonnegative
matrix and tensor factorizations: applications to exploratory multi-way
data analysis and blind source separation. Wiley, 2009.

[8] D. Kuang, C. Ding, and H. Park, “Symmetric nonnegative
matrix factorization for graph clustering,” in Proceedings
of SDM, 2012, pp. 106–117. [Online]. Available:
http://epubs.siam.org/doi/pdf/10.1137/1.9781611972825.10

[9] D. Kuang, S. Yun, and H. Park, “SymNMF: nonnegative low-rank
approximation of a similarity matrix for graph clustering,” Journal
of Global Optimization, pp. 1–30, 2013. [Online]. Available:
http://dx.doi.org/10.1007/s10898-014-0247-2

[10] J. Kim, Y. He, and H. Park, “Algorithms for nonnegative matrix and
tensor factorizations: A unified view based on block coordinate descent
framework,” Journal of Global Optimization, vol. 58, no. 2, pp. 285–319,
2014. [Online]. Available: http://dx.doi.org/10.1007/s10898-013-0035-4

[11] N.-D. Ho, P. V. Dooren, and V. D. Blondel, “Descent methods for
nonnegative matrix factorization,” CoRR, vol. abs/0801.3199, 2008.

[12] J. Kim and H. Park, “Fast nonnegative matrix factorization: An
active-set-like method and comparisons,” SIAM Journal on Scientific
Computing, vol. 33, no. 6, pp. 3261–3281, 2011. [Online]. Available:
http://dx.doi.org/10.1137/110821172

[13] R. Gemulla, E. Nijkamp, P. J. Haas, and Y. Sismanis, “Large-scale
matrix factorization with distributed stochastic gradient descent,” in
Proceedings of the KDD. ACM, 2011, pp. 69–77. [Online]. Available:
http://dx.doi.org/10.1145/2020408.2020426

[14] Y.-X. Wang and Y.-J. Zhang, “Nonnegative matrix factorization: A
comprehensive review,” TKDE, vol. 25, no. 6, pp. 1336–1353, June
2013. [Online]. Available: http://dx.doi.org/10.1109/TKDE.2012.51

[15] Y. Xu and W. Yin, “A block coordinate descent method for regularized
multiconvex optimization with applications to nonnegative tensor
factorization and completion,” SIAM Journal on Imaging Sciences,
vol. 6, no. 3, pp. 1758–1789, 2013.

[16] K. Huang, N. D. Sidiropoulos, and A. P. Liavas, “A flexible and e�cient
algorithmic framework for constrained matrix and tensor factorization,”
IEEE Transactions on Signal Processing, vol. 64, no. 19, pp. 5052–5065,
Oct 2016.

www.jmlr.org/papers/volume5/hoyer04a/hoyer04a.pdf
http://dx.doi.org/10.1016/j.procs.2014.05.108
http://dx.doi.org/10.1093/bioinformatics/btm134
http://epubs.siam.org/doi/pdf/10.1137/1.9781611972825.10
http://dx.doi.org/10.1007/s10898-014-0247-2
http://dx.doi.org/10.1007/s10898-013-0035-4
http://dx.doi.org/10.1137/110821172
http://dx.doi.org/10.1145/2020408.2020426
http://dx.doi.org/10.1109/TKDE.2012.51


14

[17] R. Kannan, G. Ballard, and H. Park, “A high-performance parallel
algorithm for nonnegative matrix factorization,” in Proceedings of
the 21st ACM SIGPLAN Symposium on PPoPP, ser. PPoPP ’16.
New York, NY, USA: ACM, February 2016, pp. 9:1–9:11. [Online].
Available: http://doi.acm.org/10.1145/2851141.2851152

[18] R. Thakur, R. Rabenseifner, and W. Gropp, “Optimization of collective
communication operations in MPICH,” International Journal of High
Performance Computing Applications, vol. 19, no. 1, pp. 49–66, 2005.
[Online]. Available: http://hpc.sagepub.com/content/19/1/49.abstract

[19] E. Chan, M. Heimlich, A. Purkayastha, and R. van de Geijn, “Collective
communication: theory, practice, and experience,” Concurrency and
Computation: Practice and Experience, vol. 19, no. 13, pp. 1749–1783,
2007. [Online]. Available: http://dx.doi.org/10.1002/cpe.1206

[20] Y. Low, D. Bickson, J. Gonzalez, C. Guestrin, A. Kyrola, and
J. M. Hellerstein, “Distributed GraphLab: A framework for machine
learning and data mining in the cloud,” Proc. VLDB Endow.,
vol. 5, no. 8, pp. 716–727, Apr. 2012. [Online]. Available:
http://dx.doi.org/10.14778/2212351.2212354

[21] X. Meng, J. Bradley, B. Yavuz, E. Sparks, S. Venkataraman, D. Liu,
J. Freeman, D. B. Tsai, M. Amde, S. Owen, D. Xin, R. Xin,
M. J. Franklin, R. Zadeh, M. Zaharia, and A. Talwalkar, “MLlib:
Machine Learning in Apache Spark,” May 2015. [Online]. Available:
http://arxiv.org/abs/1505.06807

[22] N. Satish, N. Sundaram, M. M. A. Patwary, J. Seo, J. Park, M. A.
Hassaan, S. Sengupta, Z. Yin, and P. Dubey, “Navigating the maze
of graph analytics frameworks using massive graph datasets,” in
Proceedings of the 2014 ACM SIGMOD international conference on
Management of data. ACM, 2014, pp. 979–990.

[23] H. Yun, H.-F. Yu, C.-J. Hsieh, S. Vishwanathan, and I. Dhillon, “Nomad:
Non-locking, stochastic multi-machine algorithm for asynchronous and
decentralized matrix completion,” Proceedings of the VLDB Endowment,
vol. 7, no. 11, pp. 975–986, 2014.

[24] R. Liao, Y. Zhang, J. Guan, and S. Zhou, “CloudNMF: A
MapReduce implementation of nonnegative matrix factorization
for large-scale biological datasets,” Genomics, proteomics &
bioinformatics, vol. 12, no. 1, pp. 48–51, 2014. [Online]. Available:
http://dx.doi.org/10.1016/j.gpb.2013.06.001

[25] C. Faloutsos, A. Beutel, E. P. Xing, E. E. Papalexakis, A. Kumar, and P. P.
Talukdar, “Flexi-FaCT: Scalable flexible factorization of coupled tensors
on Hadoop,” in Proceedings of the SDM, 2014, pp. 109–117. [Online].
Available: http://epubs.siam.org/doi/abs/10.1137/1.9781611973440.13

[26] J. Yin, L. Gao, and Z. Zhang, “Scalable nonnegative matrix factorization
with block-wise updates,” in Machine Learning and Knowledge
Discovery in Databases, ser. LNCS, vol. 8726, 2014, pp. 337–352.
[Online]. Available: http://dx.doi.org/10.1007/978-3-662-44845-8 22

[27] C. Liu, H.-c. Yang, J. Fan, L.-W. He, and Y.-M. Wang, “Distributed
nonnegative matrix factorization for web-scale dyadic data analysis on
MapReduce,” in Proceedings of the WWW. ACM, 2010, pp. 681–690.
[Online]. Available: http://dx.doi.org/10.1145/1772690.1772760

[28] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and I. Stoica,
“Spark: Cluster computing with working sets,” in Proceedings of
the 2nd USENIX Conference on Hot Topics in Cloud Computing,
ser. HotCloud’10. USENIX Association, 2010, pp. 10–10. [Online].
Available: http://dl.acm.org/citation.cfm?id=1863103.1863113

[29] S. Arora, R. Ge, R. Kannan, and A. Moitra, “Computing a nonnegative
matrix factorization–provably,” in Proceedings of the forty-fourth annual
ACM symposium on Theory of computing. ACM, 2012, pp. 145–162.

[30] K. Huang, N. D. Sidiropoulos, and A. Swamiy, “Nmf revisited: New
uniqueness results and algorithms,” in Acoustics, Speech and Signal
Processing (ICASSP), 2013 IEEE International Conference on. IEEE,
2013, pp. 4524–4528.

[31] K. Huang, N. D. Sidiropoulos, and A. Swami, “Non-negative matrix
factorization revisited: Uniqueness and algorithm for symmetric
decomposition,” IEEE Transactions on Signal Processing, vol. 62, no. 1,
pp. 211–224, Jan 2014.

[32] J. P. Fairbanks, R. Kannan, H. Park, and D. A. Bader, “Behavioral
clusters in dynamic graphs,” Parallel Computing, vol. 47, pp. 38–50,
2015. [Online]. Available: http://dx.doi.org/10.1016/j.parco.2015.03.002

[33] D. Grove, J. Milthorpe, and O. Tardieu, “Supporting array programming
in X10,” in Proceedings of ACM SIGPLAN International Workshop
on Libraries, Languages, and Compilers for Array Programming,
ser. ARRAY’14, 2014, pp. 38:38–38:43. [Online]. Available:
http://doi.acm.org/10.1145/2627373.2627380

[34] E. Mejı́a-Roa, D. Tabas-Madrid, J. Setoain, C. Garcı́a, F. Tirado, and
A. Pascual-Montano, “NMF-mGPU: non-negative matrix factorization
on multi-GPU systems,” BMC bioinformatics, vol. 16, no. 1, p. 43,
2015. [Online]. Available: http://dx.doi.org/10.1186/s12859-015-0485-4

[35] D. L. Sun and C. Févotte, “Alternating direction method of multipliers
for non-negative matrix factorization with the beta-divergence,” in 2014
IEEE ICASSP, May 2014, pp. 6201–6205.

[36] N. Guan, D. Tao, Z. Luo, and B. Yuan, “Nenmf: An optimal gradient
method for nonnegative matrix factorization,” IEEE Transactions on
Signal Processing, vol. 60, no. 6, pp. 2882–2898, June 2012.

[37] A. Cichocki and P. Anh-Huy, “Fast local algorithms for large scale
nonnegative matrix and tensor factorizations,” IEICE Transactions on
Fundamentals of Electronics, Communications and Computer Sciences,
vol. 92, no. 3, pp. 708–721, 2009.

[38] J. Demmel, D. Eliahu, A. Fox, S. Kamil, B. Lipshitz, O. Schwartz, and
O. Spillinger, “Communication-optimal parallel recursive rectangular
matrix multiplication,” in Proceedings of IPDPS, 2013, pp. 261–272.
[Online]. Available: http://dx.doi.org/10.1109/IPDPS.2013.80

[39] G. Ballard, A. Druinsky, N. Knight, and O. Schwartz, “Brief
announcement: Hypergraph partitioning for parallel sparse matrix-matrix
multiplication,” in Proceedings of SPAA, 2015, pp. 86–88. [Online].
Available: http://doi.acm.org/10.1145/2755573.2755613
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